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1. Abstract 

 

This study presents the capability of the use of the peridynamic laminate theory to 

capture both the failure progression and residual strength of monolithic and composite 

laminates.  Predicting damage and residual strengths of composite materials involves 

capturing complex, distinct and progressive failure modes.  Peridynamics is a 

reformulation of classical continuum mechanics that utilizes integral equations in place of 

partial differential equations to remove the difficulty in handling discontinuities, such as 

cracks or interfaces, within a body.  Damage is included within the constitutive model; 

initiation and propagation can occur without resorting to special crack growth criteria 

necessary in other commonly utilized approaches.  The peridynamic theory realistically 

models the load redistribution arising from the presence of complex failure modes 

through the use of multiple interaction types.  This study specifically employs an inverse 

approach to obtain the critical peridynamic failure parameters necessary to capture the 

residual strength of a structure.  The validity of the inverse approach is demonstrated by 

first considering its application in determining the residual strength of isotropic materials 

with pre-existing cracks.  Its validity is also demonstrated by predicting failure loads and 

final failure modes in a laminate with various hole diameters subjected to tensile and 

compressive loads. 

 

2. Introduction 

 

By utilizing failure analysis simulations that are able to capture the failure modes and 

structural behavior, the residual strength of structures can be accurately estimated in the 

design phase.  Increased confidence in these simulations enables a suitable design for a 

structure to be realized more efficiently through the reduction in design iterations and 

number of experimental test required for structural validation.   

 

The ability to accurately predict the failure of a material is perhaps one of the most 

important tasks within engineering, as understanding the failure load is paramount in 

designing a safe structure.  Whereas a reasonable estimate can be safely made without 

understanding the complex mechanisms of fracture, lighter structures can be realized with 

accurate modeling that accounts for crack initiation, growth, and propagation through the 

media.  A host of mechanisms can influence the initiation of failure, as well as the 

progression through a structure.  Griffith (1921) investigated failure initiation in glass by 

using the principle of conservation of energy, which helped explain the large discrepancy 

between the measured stress to break glass and the theoretical stress required to break the 

bonds between atoms.  This became the basis for the concept of Linear Elastic Fracture 

Mechanics (LEFM).  Based on this landmark study, numerous investigations were 

performed to explore the fracture processes and establish criteria for predicting crack 

growth.  Williams (1957) showed that, within the realm of classical continuum 

mechanics, the stress field near the crack tip approaches infinity in an elastic and 

isotropic material.  The initiation of fracture could be correlated with a stress intensity 

factor to describe the singular stress field.  The presence of this mathematical singularity 

and the need for external criteria to determine failure is problematic when considering 

realistic structures with complex stress fields. 
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Consideration of complex geometries and loading conditions requires the interjection of 

an external failure criteria into a suitable framework for determining how and when a 

defect in the form of a crack propagates.  The finite element method (FEM) is robust in 

its ability to determine stress fields and suitable for modeling structures.  Different failure 

criteria were incorporated into the framework of FEM with varying degrees of success.  It 

was not until the introduction of cohesive zone elements by Hillerborg et al. (1976) for 

Mode-I fracture mode and Xu and Needleman (1994) for a mixed-mode fracture that a 

major breakthrough in computational fracture mechanics was realized.  These methods 

are based on the cohesive zone concept independently proposed by Dugdale (1960) and 

Barenblatt (1962).  This concept introduces a restraining stress acting across the 

separating surfaces to remove the stress singularity at the crack tip.  Cohesive zone 

elements are usually surface elements that are placed along the element boundaries 

limiting crack growth to these regions.  However, the crack paths are unknown a priori, 

and they are highly sensitive to mesh texture and alignment (Klein et al., 2001).  The 

concept of eXtended Finite Element Method (XFEM) was introduced as a technique to 

model cracks and crack growth within the realm of finite elements without remeshing 

(Belytschko and Black, 1999; Moees et al., 1999).  XFEM is based on the partition of 

unity property of finite elements (Melenk and Babuska, 1996).  It permits cracks to 

propagate through any surface within an element, removing the limitations of the 

cohesive zone elements.  While being successfully used to consider numerous fracture 

problems, the XFEM still requires external crack growth criteria to predict crack growth. 

 

When considering failure in complex materials, such as fiber reinforced composite 

laminates, the existing failure criteria are phenomenological and empirical in nature. 

There exist two commonly accepted methods: progressive ply failure and damage 

mechanics.  The damage mechanics approach employs physically based equations for 

damage initiation and evolution while considering the microstructure of material (Falzon 

and Apruzzese, 2011; Lapczyk and Hurtado, 2007; Talreja, 1994).  However, it requires 

extensive material characterization for damage parameters, and in most cases such 

measurements are not feasible.  Progressive ply failure combines failure criteria for 

damage type identification (Hashin, 1980; Sun, 2008) and degradation of the material 

stiffness (Chang and Chang, 1987; Chang and Lessard, 1991; Ochoa and Reddy, 1992).  

The value of degradation factor is not-physically based; it is assigned a small enough 

value in order to ensure the convergence of finite element analysis with traditional plate 

elements for modeling composite laminates.   

 

Silling (2000) and Silling et al. (2007) introduced the peridynamic theory to remove 

discontinuities within classical continuum theory and to predict failure in monolithic 

materials.  In the peridynamic (PD) theory, internal forces are expressed through nonlocal 

force interactions between material points within a continuous body.  Each material point 

interacts with other material points within a finite distance referred to as the horizon, and 

damage is part of the constitutive model.  The resulting equations of motion do not 

require the use spatial derivatives, and therefore, are defined even in the presence of a 

discontinuity. 
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The PD theory is a reformulation of the classical continuum equations of motion.  It 

replaces the partial differential equations of motion with integro-differential equations.  

The equations of motion from classical continuum theory, can be expressed as 

 

     , ,  t tx u x σ b x  (1) 

 

in which   is the mass density, and σ  is the first Piola-Kirchoff stress tensor.  The 

displacement and body force density vectors are denoted by u  and b  respectively. The 

position vector x  defines each point with respect to the reference configuration at time t .  

In the PD theory, the divergence of the stress tensor on the right hand side of Eq. (1) is 

replaced with an integral that accounts for all the nonlocal force interactions that exists 

between a material point and all of the material points within its horizon.  The PD 

equations of motion can be expressed in terms of the force density vector, t , that exists 

between material points, as 

 

          , , ' , , ', ,  .         
H

t t t dH tx u x t u u x x t u u x x b x  (2)
 

 

where the material point x  interacts with material point 'x  within its family of material 

points, H .  Numerical solution to the resulting equations of motion can be achieved by 

discretizing in the form 

 

 

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

, ,

, ,






  


   


k k k j j k j k

j

k j j k j k j k

t

t V

u t u u x x

t u u x x b
 (3)

 

 

With the inclusion of a damage parameter in the force density vector and with the 

removal of the difficulties related to discontinuities, damage initiates and progresses 

within a structure where it is energetically favorable.  There is no need for any external 

failure criteria as with classical continuum based methods.  PD has been shown to be 

extremely versatile in predicting damage.  Silling (2003) considered the Kalthoff-Winkler 

experiment, in which a plate having two parallel notches is hit by an impactor, and 

showed that PD is able to predict the angle of crack growth observed in experiments.  

Impact damage, including from Charpy-V notch tests, was predicted by Silling and 

Askari (2004).  A center cracked plate was used by Silling and Askari (2005) to show 

numerical convergence.  Gerstle and Sau (2004) demonstrated the ability to model 

damage in plain and reinforced concrete structures.  The ability to incorporate complex 

material models for stretching and tearing of a rubbery material was demonstrated by 

Silling and Bobaru (2005).  Using this model, they were able to predict the oscillatory 

path of a blunt tool forced through a membrane, tearing of a membrane, and the crack 

growth in a membrane with a slit. 

 

In recent years, PD theory has also been applied to predict damage in composites.  Within 

the PD framework, the simplest approach to model a composite layer with directional 
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properties is achieved by assigning different material properties in the fiber and other 

(remaining) directions.  The interactions between neighboring layers are defined by using 

inter-layer bonds.  Askari et al. (2006) and Colavito et al. (2007a, 2007b) predicted 

damage in laminated composites subjected to low-velocity impact and damage in woven 

composites subjected to static indentation.  In addition, Xu et al. (2007) considered 

notched laminated composites under biaxial loads.  Also, Oterkus et al. (2010) 

demonstrated that PD analysis is capable of capturing bearing and shear-out failure 

modes in bolted composite lap-joints.  Xu et al. (2008) analyzed the delamination and 

matrix damage process in composite laminates due to low-velocity impact. Recently, 

Askari et al. (2011) considered the effect of both high- and low-energy hail impacts 

against a toughened-epoxy, intermediate-modulus, carbon-fiber composite.  Also, Hu et 

al. (2011, 2012) predicted the basic failure modes of fiber, matrix, and delamination in 

laminates with a pre-existing central crack under tension. The analytical derivation of the 

PD material parameters, including thermal loading conditions, was recently given by 

Oterkus and Madenci (2012).  They also demonstrated the constraints on material 

constants due to the pair-wise interaction assumption.  An alternative approach to model 

composites was introduced by Kilic et al. (2009) by distinguishing fiber and matrix 

materials based on the volume fraction.  Although this approach may bring certain 

advantages by taking into account the inhomogeneous structure discretely, it is 

computationally more expensive than the homogenized approach.  Oterkus et al. (2012) 

coupled PD with FEM to predict the failure loads in a curved, stiffened composite panel 

with a central slit subjected to uniaxial loading and an internal pressure.  These studies 

demonstrate the ability of the PD theory to accurately model both the progressive damage 

and final failure modes of composite laminates.   

 

As demonstrated by the aforementioned studies, the ability of PD to predict failure 

initiation and progression in monolithic and composite materials has been well 

established.  However, no extensive investigations into the ability of PD to predict the 

residual strength of a structure exist.  Paramount to predicting the residual strength of a 

structure using PD is the assignment of critical failure parameters.  The most commonly 

used failure parameter in PD is the critical stretch.  The stretch, which is analogous to 

strain in classical continuum mechanics, is monitored between PD material points.  When 

the stretch value reaches the critical stretch then the interaction between those material 

points is terminated.  Silling and Askari (2005) proposed equating the energy required to 

create a unit fracture surface in PD to the energy release rate in order to develop an 

analytical equation to determine the critical stretch.  Alternatively, Kilic (2008) showed 

that for monolithic materials that the failure load for a plate with a central hole is directly 

proportional to the critical stretch.  Based on these two concepts, this study presents an 

inverse approach to determine the critical stretch value required for the accurate 

determination of the residual strength of a structure.  It applies such a method to both 

monolithic materials and fiber-reinforced composite laminates.   
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3 . State-based peridynamic laminate theory 

 

Although the use of laminated composites enables the design and fabrication of advanced 

airframes, there exist significant design limitations on composite structures.  These 

limitations are often related to inter-laminar stresses.  Thick section laminates, especially 

in the transverse direction, experience high stresses as a result of bending moments, 

specific local stresses and impact damage.  Many applications have a dynamic 

combination of high load/high cycle, which often results in delamination formation and 

crack growth.  Failure of composite structures involves a progressive series of events 

with discrete failure modes such as matrix cracking, fiber-matrix shear, fiber breakage, 

and delamination.  Despite the development of many important concepts to predict 

material behavior and failure, the prediction of failure modes and residual strength of 

FRP composites is still a challenge.  It is evident that the inhomogeneous nature of 

composites must be retained in the analysis. 

 

The peridynamic theory (PD) pertaining to monolithic materials was introduced by 

Silling (2000) and Silling et al (2007).  Based on these studies, several different 

approaches to model composite laminates were proposed.  In the PD theory, material 

points interact with each other directly through the prescribed response function, which 

contains all of the constitutive information associated with the material. The response 

function includes a length parameter called the horizon,  .  The locality of interactions 

depends on the horizon, and interactions become more local with a decreasing horizon.  

Each fiber-reinforced composite lamina of a laminate shown in Fig. 1 is idealized as a 

two-dimensional structure with the directional dependency of the interactions between 

the PD material points.  As shown in Fig. 2, the material point ( )q  represents material 

points that interact with material point ( )k  only along the fiber direction with an 

orientation angle of   in reference to the x-axis.  Similarly, material point ( )r  represents 

material points that interact with material point ( )k  only along the transverse direction.  

However, the material point ( )p  represents material points that interact with material 

point ( )k  in any direction, including the fiber and transverse directions. The orientation 

of a PD interaction between the material point ( )k  and the material point ( )p  is defined 

by the angle   with respect to the x-axis.  The domain of integration, H  shown in Fig. 2 

is a disk with radius   and thickness h.  The material points in a particular lamina 

interact with the other material points of immediate neighboring laminae above and 

below it. 

 

As shown in Fig. 1, the reference coordinate system ( , , )x y z  is located on the mid-plane 

of the laminate.  The laminate thickness, h  is given by 

 

1


N

n

n

h h    (4) 

 

where N  is the total number of lamina in the stacking sequence, and 
nh  is the thickness 

of 
thn lamina.  With respect to the mid-plane, the position of each lamina, 

nz  is defined as   
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1

1

1

2 2





   
n

n m n

m

h
z h h   (5) 

 

 
 

Figure 1.  Elevation of each lamina in laminate and PD material points. 

 
 

Figure 2.  PD horizon for a family of material points and their interactions in a lamina. 

 

 

As derived by Madenci and Oterkus (2013), the equation of motion for material point 

( )

n

kx  located on the 
thn  layer of a laminate with N  layers can be expressed as 

 

   ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1

( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

1, 1 1, 1 1

, , , ,

2




      

      
 

  



  

n n n n n n n n n n n n n

k k k j j k j k j k k j k j j

j

n m m n m m n

k k k j j k

m n n m n n j

t t V

V V

u t u u x x t u u x x

p q b

 (6) 
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where the material point, ( )

n

kx  on the 
thn  layer is associated with an incremental volume, 

( )

n

kV  and a mass density of ( ) n

k ; t designates time.  With respect to a Cartesian coordinate 

system, the material point, ( )

n

kx  experiences displacement, ( )

n

ku , and its location is 

described by the position vector, ( )ky  in the deformed state.  The displacement and body 

load vectors at material point, ( )

n

kx , are represented by ( )

n

ku  and ( )

n

kb , respectively.  The 

motion of a material point conforms to the Lagrangian description of motion.  

 

Arising from in-plane deformation, ( )( )

n

k jt  represents the force density that material point, 

( )

n

jx  exerts up on material point, ( )

n

kx .  The force density-stretch relationships can be 

expressed as  

 

  ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1
, ,

2


  



j k

k j j k j k k j

j k

t A
y y

t u u x x
y y

 (7) 

 

and 

 

  ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1
, ,

2


   



k j

j k k j k j j k

k j

t B
y y

t u u x x
y y

 (8) 

 

where ( )( )k jA  and ( )( )j kB  are auxiliary parameters.  The PD strain energy density at point 

( )kx   for in-plane deformations can be expressed as 

 

 

 

2
2

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( )

2

( ) ( ) ( ) ( ) ( )

1 ( ) ( )

       












    


   






J

k k F j k j k j

j j k

FT j k j k j

j j k

W a b V

b V

y y x x
x x

y y x x
x x

  

 
2

( ) ( ) ( ) ( ) ( )

1 ( ) ( )

       




   



J

T j k j k j

j j k

b Vy y x x
x x

 (9) 

 

in which the PD parameter a  is associated with the deformation associated with the 

dilatation, ( ) k , of the matrix.  The remaining PD parameters, ,Fb  ,Tb  and FTb , are 

associated with deformation of material points in the fiber, transverse, and arbitrary 

directions, respectively.  The fiber and transverse interactions exists only in the directions 

parallel and transverse to the fiber, and therefore, are limited to 1,j J .  The arbitrary 

interactions exist in all directions.  The PD dilation, ( ) k , of the matrix can be expressed 

as  
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 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 ( ) ( )








    


k j k j k k j j

j j k

d Vy y x x
x x

 (10) 

 

The auxiliary parameters, ( )( )k jA  and ( )( )j kB , can be determined using the relationship 

between force density vector and the strain energy density, ( )kW , at material point k , 

which is expressed in the form 

 

 
 

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1
, ,

 
  

 

k j k

k j j k j k

j j kj k

W
t

V

y y
t u u x x

y yy y
 (11) 

 

Following the substitution and performing the differentiation, the auxiliary parameters, 

( )( )k jA  and ( )( )j kB , can be expressed in terms of the PD material parameters as 

 

 ( )( ) ( )( ) ( ) ( )( )

( ) ( )

4 4


       


k j k j k F F FT T T k j

j k

A ad b b b s
x x

, (12a) 

 

and  

 

 ( )( ) ( )( ) ( ) ( )( )

( ) ( )

4 4


       


j k j k j F F FT T T j k

k j

B ad b b b s
x x

 (12b) 

 

with 

 

( ) ( ) ( ) ( )( )

( )( )

( ) ( )

  




n n n n

j k j kn

k j n n

j k

s
y y x x

x x
  (13a) 

 

and 

 

( ) ( )1 ( - )//fiber direction

0             otherwise



 


j k

F

x x
  (13b) 

 

and 

 

( ) ( )1 ( - ) fiber direction

0                  otherwise .



 


j k

T

x x
  (13c) 
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The force density vectors, ( )( )

( )

n m

kp  and ( )( )

( )( )

n m

k jq  with ( 1),( 1)  m n n  develop due to the 

transverse normal and transverse shear deformations, respectively, between the material 

points ( )

n

kx  and ( )

m

kx .  The force density-stretch relationships can be expressed as  

( ) ( )( )( ) ( )( )

( ) ( )

( ) ( )






m n

k kn m n m

k k m n

k k

C
y y

p
y y

  

,  (14a) 

 

and 

 

( ) ( )( )( ) ( )( )

( )( ) ( )( )

( ) ( )






m n

j kn m n m

k j k j m n
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D
y y

q
y y

  

,  (14b) 

 

where 
( )( )

( )

n m

kC , and 
( )( )

( )( )

n m

k jD  are auxiliary parameters.  Within a composite laminate, there 

commonly exists a resin rich matrix region between lamina that behaves as an isotropic 

linear elastic material.  Therefore the strain energy expression will be consistent with this 

form.  The explicit form of the strain energy density functions, 
( )

ˆ n

kW  and ( )

n

kW ,  for 

transverse normal and transverse shear deformations can be written as 

 

 
2

( ) ( ) ( ) ( ) ( ) ( )

1, 1 ( ) ( )

ˆ
ˆ 

  

   

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k N k k k k km n
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 (15a) 

 

and 

 

 ( ) ( ) ( ) ( ) ( )

1, 1 1 ( ) ( )



   

   
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 n m n m n

k S j k j km n
m n n j j k

W b y y x x
x x  

 
2

( ) ( ) ( ) ( ) ( )          


m n m n m

k j k j jVy y x x ,  (15b) 

 

in which the PD parameters Nb  and 
Sb  are associated with the transverse normal and 

transverse shear deformations, respectively, existing between bonded lamina.  The 

parameter ̂  is the horizon size in the thickness direction and   is defined as  

 

2 2ˆ .     

 

The auxiliary parameters, 
( )( )

( )

n m

kC , and 
( )( )

( )( )

n m

k jD , can be determined using the relationship 

between force density vector and the strain energy density, 
( )

ˆ n

kW  and ( )

n

kW , at material 

point k , which are expressed in the form (Madenci and Oterkus, 2013) 
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and 
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Following the substitution and performing the differentiation, the auxiliary parameters, 
( )( )

( )

n m

kC , and 
( )( )

( )( )

n m

k jD can be expressed in terms of the PD material parameters as 

 

  ( ) ( )( )( )

( ) ( ) ( ) ( ) ( )

( ) ( )

4
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and 
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( ) ( )

4
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 (17b) 

 

3.1 Material parameters 

 

The PD material parameters can be obtained in terms of engineering material constants 

by considering simple loading conditions and equating the PD strain energy density to the 

strain energy density from the classical continuum mechanics.  The PD material 

parameters, a , d , ,Fb Tb , and FTb , related to in-plane deformations can be obtained by 

considering four different loading conditions: simple shear, uniaxial stretch in fiber 

direction, uniaxial stretch in transverse direction, and biaxial stretch.  The PD material 

parameters, Nb  and 
Sb , associated with transverse deformations can be obtained by 

considering two different loading conditions: transverse normal stretch and simple 

transverse shear. 

 

As derived by Madenci and Oterkus (2013), the parameters can be related to the four 

independent material constants of elastic modulus in the fiber direction, 
11E , elastic 

modulus in the transverse direction,
22 ,E  in-plane shear modulus, 12G , and in-plane 

Poisson’s ratio, 
12  as 

 

 12 66

1

2
 a Q Q  (18a) 
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where 

 

11
11

12 211  
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

E
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

 
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 ,
 
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E E

 22
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1
S

E
, 66

12

1
S

G
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with 12 11 21 22 E E  and 
mE and 

mG  represent the Young’s modulus and shear 

modulus of the matrix material.  The resulting PD model of a laminate consists of 

laminae connected with transverse normal and shear deformations, and it accurately 

models the behavior of fiber reinforced laminate composites. 
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The PD material parameters are derived under the assumption that the material point 

located at x is in a single material with its complete neighborhood entirely embedded 

within its horizon,  .  However, this assumption becomes invalid when the material 

point is close to free surfaces or material interfaces. Therefore, there is a reduction in 

material stiffness near the free surfaces. On the other hand, stiffness near the interface can 

exhibit an increase or reduction, depending upon how dissimilar material regions interact 

across their interface. Since free surfaces and material interfaces vary from one problem 

to another, it is impractical to resolve this issue analytically. Therefore, the stiffness 

reduction or increase due to surfaces is corrected numerically.  A surface and interface 

correction factors, as explained by Madenci and Oterkus (2013), can be used to account 

for the loss in stiffness near the surface and to accommodate the transition between 

dissimilar laminae. 

 

A numerical treatment is necessary to solve for the PD equations of motion which 

involves differentiation with respect to time and spatial integration.  The numerical 

treatment of the equations of motion, Eq. (6), involves the discretization of the domain of 

interest into subdomains.  Within these subdomains, the velocity and displacement fields 

are assumed to be constant.  Each subdomain can then be represented by a single 

collocation point located at the center of each subdomain.  The details of the numerical 

treatment is also explained by Madenci and Oterkus (2013). 

 

Solution of the PD equation of motion requires initial velocity and displacement 

conditions as well as boundary conditions.  The introduction of displacement, velocity, or 

body force boundary conditions is different than the approach used in classical continuum 

mechanics due to the non-local nature of PD.  The details of the introduction of the 

boundary conditions are discussed by Madenci and Oterkus (2013).  The regions 

surrounding the boundary conditions require special treatment to prevent unrealistic 

damage accumulation.  No fail regions are introduced in the region surrounding the 

boundary conditions to prevent this phenomenon.   

 

Time integration of Eq. (6) is computationally expensive due to the small time-step size 

required for stable integration.  This study concerns quasi-static loading; therefore, the 

adaptive dynamic relaxation (ADR) method, first utilized by Kilic and Madenci (2010), is 

used to solve the system of ordinary differential equations resulting from Eq. (6).   

 

 

3.2. Numerical verification 

 

The response of fiber-reinforced composite laminate to loading is dependent on the 

material properties of each lamina, the lamina thicknesses, and the specific layup.  The 

validity of the PDLT for composite laminates is demonstrated through comparisons with 

classical laminate theory (CLT) and FEM analysis by considering laminates with 

complex layup under in-plane tension and transverse pressure. 
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3.2.1  Laminates subjected to tensile loading 

A four ply laminate subjected to uniaxial tensile loading is considered to demonstrate the 

capability of PDLT to capture the deformation of a laminate.  The material system is 

fiberglass epoxy lamina.  The material properties of the lamina are 
11 38.6 GPaE , 

22 10.3 GPaE , 
12 4.5 GPaG , and 

12 0.33  .  The length and width of each specimen 

is 1.6 mL   and 1.0mW , respectively.  The grid size in the model is 0.01 mm x  

resulting in 160 points in the length direction and 100 material points in the width 

direction.  The nominal ply thickness is 0.01 mkt   resulting in a total laminate thickness 

of 0.04 mh  .  The horizon is specified as 3.015  x .  The uniaxial tension is applied 

as a body load, equivalent to a stress resultant of 1000 N mxN , to the material points 

in a volumetric region at both ends of the plate extending the width of the laminate and a 

length of 0.1 m.b    During the solution, failure is not allowed and the analysis is run 

until the system reaches equilibrium.  Four separate layups are considered to demonstrate 

the ability of the PD formulation to capture the behavior of a laminated composite.  

 

 
 

Figure 3.  Geometry of a composite laminate under uniaxial tensile loading 

 

The first case is a symmetric cross-ply laminate with a layup of [0 / 90 ]S .  For 

symmetric laminates, CLT predicts that there is no coupling between bending and 

extension.  Therefore, the panel exhibits only in-plane deformations for the prescribed 

loading condition.  Displacement contours on the mid-plane of the laminate are shown in 

Fig. 4.  The variations of the in-plane displacement components at the mid-line of the 

laminate are compared with the analytical results from the CLT in Figs. 5 and 6.   
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                                  (a)                                                          (b)            

Figure 4.  Displacement contours for the [0 / 90 ]S  laminate subjected to an uniaxial tensile 

load: a) ( )xu and b) ( )yu  

 
 

Figure 5.  Horizontal displacement  xu  along the central axis for the [0 / 90 ]S  laminate. 
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Figure 6  Horizontal displacement  yu  perpendicular to the central axis for the [0 / 90 ]S  

laminate 

 

The next case considers a unidirectional 4[45 ]  angle ply laminate with the fibers 

oriented in the off-axis direction to induce a stretching-shearing coupling behavior when 

subjected to the prescribed loading condition.  Figure 7 shows the stretching-shearing 

coupling behavior in the plane of the laminate.  The variations of the in-plane 

displacement components at the mid-line of the laminate are compared with the analytical 

results from the CLT in Figs. 8 and 9.   

 

 
                                    (a)                                                     (b)            

Figure 7  Displacement contours for the 4[45 ]  laminate subjected to an uniaxial tensile load: a) 

( )xu and b) ( )yu  
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Figure 8  Horizontal displacement  xu  along the central axis for the 4[45 ]  laminate. 

 
 

Figure 9  Horizontal displacement  yu  perpendicular to the central axis for the 4[45 ]  

laminate. 
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The third case considers an anti-symmetric [ 45 / 45 / 45 / 45 ]   laminate. When 

subjected to the prescribed uniaxial tensile loading, it experiences stretching-twisting 

interaction as shown in Fig. 10.  The variations of all the displacement components at the 

mid-line of the laminate are compared with the analytical results from the CLT in Figs. 

11, 12, and 13.   

 
                        (a)                                       (b)                                            (c)                

Figure 10 Displacement contours for the [ 45 / 45 / 45 / 45 ]   laminate subjected to an 

uniaxial tensile load: a) ( )xu , b) ( )yu  and c) ( )zu  

 

 
 

Figure 11  Horizontal displacement  xu  along the central axis for the [ 45 / 45 / 45 / 45 ]   

anti-symmetric laminate. 
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Figure 12  Horizontal displacement  yu  perpendicular to the central axis for the 

[ 45 / 45 / 45 / 45 ]   anti-symmetric laminate. 

 
 

Figure 13  Vertical displacement  zu  along the central axis for the [ 45 / 45 / 45 / 45 ]   

anti-symmetric laminate. 
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The final case considers a [0 / 90 / 0 / 90 ]  laminate, which exhibits stretching-bending 

deformations when subjected to the uniaxial tension as shown in Fig. 14. The variation of 

the displacement components at the mid-line of the laminate are compared with the 

analytical results from the CLT in Figs. 15, 16, and 17.   

 

For all these complex laminate layups, the PD theory captures the expected deformation 

couplings, and there is a good agreement between the PD and analytical displacements. 

 

     
                        (a)                                        (b)                                            (c)                

 

Figure 14  Displacement contours for the [0 / 90 / 0 / 90 ]  laminate subjected to an uniaxial 

tensile load: a) ( )xu , b) ( )yu  and c) ( )yu  

 

 
 

Figure 15  Horizontal displacement  xu  along the central axis for the [0 / 90 / 0 / 90 ]  

laminate. 
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Figure 16  Horizontal displacement  yu  perpendicular to the central axis for the 

[0 / 90 / 0 / 90 ]  laminate. 

 

 
 

Figure 17  Vertical displacement  zu  along the central axis for the [0 / 90 / 0 / 90 ]  

laminate. 
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3.2.2  Laminate with a hole subjected to tensile loading 

A laminate with a layup of [0 / 45 / 45 / 0 ] , with a central hole, is subjected to uniaxial 

tensile loading to demonstrate the capability of PD laminate theory to accurately model 

complex laminates.  The material system is unidirectional AS4/3501-6 carbon fiber 

epoxy lamina.  The material properties of the lamina are 
11 142 GPaE , 

22 10.3 GPaE , 

12 4.5 GPaG , and 
12 0.27  .  The length and width of each specimen is 1.0 mL   and 

1.0 mW  , respectively.  The grid size in the model is 0.01 mm x  resulting in 100 

points in the length direction and 100 material points in the width direction.  The nominal 

ply thickness is 0.01 mkt   resulting in a total laminate thickness of 0.04 mh  .  The 

horizon is specified as 3.015  x .  The uniaxial tension is applied as a body load, 

equivalent to a stress resultant of 
64.26 10 N mxN   , to the material points in a 

volumetric region at both ends of the plate extending the width of the laminate and a 

length of 0.03 mb  .  During the solution, failure is not allowed and the analysis is run 

until the system reaches equilibrium.   

 

Figure 18 shows the contour plots of the displacement components, and deformed shape.  

The variations of the 
xu  displacement in the x  direction are obtained for each of the 

layers of the laminate along the mid-line as well as along the edge and compared with 

analytical results from the CLT in Figs. 19.  There is a good agreement between the PD 

and analytical displacements away from the central hole.  The PDLT clearly captures the 

coupling between in-plane shear and extension type deformations.  

 
                                 (a)                                                         (b)                     

Figure 18  Displacement contours for the [0 / 45 / 45 / 0 ]  laminate subjected to an uniaxial 

tensile load: a) ( )xu and b) ( )yu  
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Figure 19  Horizontal displacement  xu  for the [0 / 45 / 45 / 0 ]  laminate. 

 

3.2.3  Laminate subjected to three point bending 

A quasi-isotropic laminate with layup [0 / 90 / 45 / 45 ] S  is subjected to three point 

bending to demonstrate the capability of PDLT in the presence of transverse loading as 

shown in Fig.20.  The material system is unidirectional AS4/3501-6 carbon fiber epoxy 

lamina.  The material properties of the lamina are 11 142 GPaE , 22 10.3 GPaE , 

12 4.5 GPaG , and 
12 0.27  .  The length and width of each specimen is .1025 mL   

and .025 mW  , respectively.  The grid size in the model is 0.0025 mm x  resulting 

in 41 points in the length direction and 10 material points in the width direction.  The 

nominal ply thickness is 0.00013 mkt   resulting in a total laminate thickness of 

0.00104 mh  .  The horizon is specified as 3.015  x .  A displacement boundary 

condition of 
3 0u  was enforced on the material points residing on the third layer along 

the width at each end of the laminate.  The central load is applied as a body load, 

equivalent to a pressure of 
21000 N mzP  , to the material points in a volumetric region 

at the center the plate extending the width and thickness of the laminate along a length of 

0.02 m.b    During the solution, failure is not allowed, and the analysis is run until the 

system reaches equilibrium.  The variations of the 
zu  displacements in the x  direction 

and the z  direction are obtained at the mid-plane of the laminate, and compared with the 

FEM results in Figs. 21-22.  There is a good agreement between the PD predictions and 

those of Refined Zigzag Theory (RZT) element (Barut et al. 2013). 
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Figure 20  Loading and geometry of a composite laminate under three point bending. 

 

 
Figure 21  Vertical displacement  zu  along the central axis for the [0 / 90 / 45 / 45 ] S  

laminate. 
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Figure 22  Vertical displacement  zu  along the vertical axis of the [0 / 90 / 45 / 45 ] S  

laminate. 

 

 

4. Failure prediction  

4.1 Damage in monolithic material 

Material damage in PD is introduced through elimination of interactions among the 

material points.  It is assumed that when the stretch, ( )( )k js  between two material points k  

and j  exceeds its critical value, 
cs  the onset of damage occurs.  Based on the concept 

introduced by Silling and Askari (2005), the critical stretch for isotropic materials can be 

obtained as derived Madenci and Oterkus (2013) by relating the energy required to create 

a fracture surface in a material to the critical energy release rate of that material as  
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 (20) 

 

It is worth noting that the critical stretch is a function of the horizon.  The value of the 

horizon brings in the effect of the physical material characteristics, nature of loading, 

length scale, and the computational cut-off radius.  This simple relationship provides the 
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value of critical stretch for a linear elastic brittle material with a known critical energy 

release rate.   

 

In order to include damage initiation in the material response, the force density vectors 

can be modified through a history-dependent scalar-valued function   (Silling and 

Bobaru, 2005). When the stretch between these material points exceeds its critical stretch, 

failure occurs; thus, the history-dependent scalar-valued function,   is zero rendering the 

associated part of the force density vector to be zero.  Damage is reflected in the 

equations of motion by removing the force density vectors between the material points in 

an irreversible manner.  As a result, the load is redistributed among the material points in 

the body, leading to a progressive damage growth in an autonomous fashion.   

 

Local damage at a point is defined as the weighted ratio of the number of eliminated 

interactions to the total number of initial interactions of a material point with its family 

members.  The local damage at a point can be quantified as (Silling and Askari, 2005) 
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t dV

t
dV

x x

x . (21) 

 

The local damage ranges from zero to one.  When the local damage is unity, all the 

interactions initially associated with the point are eliminated, while a local damage of 

zero means that all interactions are intact.  The measure of local damage is an indicator of 

possible crack formation within a body.  For example, initially a material point interacts 

with all materials in its horizon as shown in Fig. 23 (a); thus, the local damage has a 

value of 0.  However, the creation of a crack terminates half of the interactions within its 

horizon resulting in a local damage value of ½. 

 

 
                                                     (a)                                                         (b) 

Figure 23 (a) All interactions are intact (no damage), (b) Half of the terminated interactions 

create a crack. 

 

At each time step in the numerical process, the displacement at each collocation point and 

the stretch between collocation points is computed.  The stretch is monitored, and if it 

exceeds a critical value, cs , then the interaction is terminated.  The ratio of terminated 

interaction to total interactions at each collocation point is calculated during the 

numerical volume integration to obtain the local damage defined in Eq. (21). 
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A fracture surface can be defined as a region where no interactions between material 

points are present.  Insertion of a crack in the PD model can be accomplished by breaking 

all the interactions across the surface of the crack.  The insertion of a crack in this manner 

requires determining whether an interaction crosses the plane of a crack, which can be 

tedious depending on the location and orientation.  If the interaction crosses the crack 

surface, then the interaction is terminated.  Alternatively, a crack can be inserted by 

terminating the interaction if one of the material points is above the plane of the crack 

while the other is below the plane of the crack.   

 

4.2 Damage in composite laminates 

Five different interaction types are present in the PD formulation for fiber reinforced 

composite laminates to capture the major failure modes.  This is accomplished by 

assigning unique critical stretch values to the different interaction types.  The constitutive 

or force-stretch relations, for the interactions within the plane of a lamina, in the fiber, 

transverse, and arbitrary directions, are shown in Fig. 24.  In this study, the transverse and 

arbitrary critical parameters are combined into a matrix critical stretch in tension and 

compression as 
mts  and 

mcs , respectively.  The critical parameters in the fiber direction in 

tension and compression are fts  and fcs , respectively.  The critical stretch parameters for 

composite laminates can be obtained using experimental methods (Oterkus et al., 2012), 

calibration using an inverse approach (Colavito et al., 2007a; 2007b) or through equating 

the energy required to create a fracture surface to the energy release rate (Hu et al., 2011, 

2012). 

 

 
Figure 24  Force-stretch relationships for peridynamic interactions 

 

4.3 Inverse approach for critical stretch 

The inverse approach is an alternative to the use of analytical critical stretch expression.  

This method combines the PD simulation with an experimental test to calibrate the 

critical stretch value.  For the first step, a trial critical stretch is used in the PD simulation 

to obtain the peak failure load of the specimen.  The PD prediction of the peak failure 

load is then compared to the experimentally observed peak failure load to determine if the 

trial critical stretch value is valid.  If an unacceptable offset exists between the predicted 

and measured failure loads, then the trial critical stretch is adjusted with respect to the 

offset.  The process is then repeated until the PD prediction of failure load is equal to the 
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Compression
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FT
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experimental failure load.  At the end of the iterative process, the critical stretch value is 

obtained.   

4.3.1 Monolithic materials 

The applicability of the critical stretch as a failure parameter is demonstrated for a linear 

elastic material by considering the experimental study conducted by Ayatollahi and Aliha 

(2009).  They considered diagonally loaded square plate specimens, shown in Fig. 25a, to 

investigate the effect of mode mixity ranging from pure mode I to pure mode II.  They 

provided the failure loads, crack propagation paths for each of the specimens and fracture 

toughness of the material, 
ICK .  The edge length of the diagonal square is 2 0.15 mW  

and its thickness is 0.005 mh .  The length of the crack is 2 0.045 ma  with an 

orientation angle of  .  The material has an elastic modulus of 2940 MPaE , 

Poisson’s ratio of 0.38  , and fracture toughness of 1.33 MPa mICK .  They also 

reported the failure loads for varying crack orientation angles of 

0 (ModeI),15 ,30 ,45 ,62.5 (ModeII)  .  Center of the crack coincides with the origin 

of the Cartesian coordinate system.  The applied load is introduced through a velocity 

constraint of 91 10 m sV    in the volume defined by dotted lines while enclosing the 

circular regions at opposite corners.  The initial crack is inserted in the PD model by 

removing the interactions across the crack surface.   

 

       
                                    (a)                                                  (b) 

 
Figure 25 a) DLSP Specimen b) PD model of DSPL. 

 

The crack propagation paths obtained from the PD simulations and those of the 

experimental observations are plotted in Fig. 26.  A good agreement is observed between 

the predictions and observed crack paths.  Crack growth initiation angles are also 

compared between the predictions and measurements.  Again, a very good comparison is 

obtained as shown in Fig. 27.  Finally, the failure loads are compared, and it is observed 

that the failure loads obtained from the PD simulations are within 15% of the 

experimental values for all crack inclination angles as depicted in Fig. 28.  While the PD 

simulations are close to the experimental results for pure Mode I case and pure Mode II 

cases, the mixed mode PD failure predictions are higher than the experimental values.  A 

possible reason for this could be due to specimen preparation, which does not ensure a 
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sharp crack tip.  The specimen preparation procedure requires the use of a fret saw to 

create a crack without additional cyclic loading.  The inclined angle of the crack, coupled 

with the shape of the crack tip, could in effect change the cracks tip orientation causing 

the offset observed in the comparison.  Despite this offset, the agreement is satisfactory; 

thus, validating the critical stretch value of 0.089. 

 

 
 

Figure 26 Experimental and PD crack propagation paths 

 

 
 

Figure 27 Comparison of crack growth initiation angle between peridynamic and experimental 

results as a function of crack inclination angle. 
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Figure 28 Comparison of the failure load between peridynamic and experimental results as a 

function of crack inclination angle. 

 

4.3.2 Laminated composites 

The inverse approach for monolithic materials is modified for the PDLT to accommodate 

the multiple interaction types and critical stretch values.  To demonstrate the approach, 

the inverse method is used to obtain the fiber and matrix critical stretch values for a 

notched quasi-isotropic AS4/3501-6 laminates subjected to tensile and compressive 

loading.  In the experimental study conducted by Wang et al. (2004), the tensile and 

compressive peak loads are obtained for a 2[45 / 0 / 45 / 90] S  panel with four different 

central hole diameters (2.00, 3.81, 6.35, and 9.55 mm).  The following procedure is used 

to obtain the matrix and fiber critical stretch values for a horizon value of 0.0022914 m.   

 

To utilize the inverse approach, several assumptions regarding the progression of failure 

are necessary.  The first assumption is that the failure in tension depends primarily on 

matrix cracking.  Therefore, the peak failure load of the laminate primarily depends on 

the tensile matrix critical stretch.  This assumption is made after examination the failure 

patterns for two different laminates, [0 / 90]xS  and [45 / 45]xS .  The failure modes 

present in the [0 / 90]xS  laminate are longitudinal fracture of the matrix in the 90° layer 

and fracture of the fibers in the 0° layer.  The failure modes present in the [45 / 45]xS  

laminate are longitudinal fracture of the matrix for all layers and delamination between 

layers.  For both laminates, the longitudinal fracture of the matrix precedes the other 

failure modes and dictates the final failure pattern, and allows for such an assumption. 

The second assumption concerning the laminate compressive strength is dictated by 

compressive fiber critical stretch.  This assumption relies on the experimental 

observations of the progressive failure of the identical laminate specimen with a 6.35 mm 
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diameter hole.  Suemasu et al. (2005) observed that damage first appeared due to fiber 

micro-buckling in the 0° layers.  They also observed additional fiber micro-buckling in 

the 0° layers and inter-laminar delamination prior to a sudden failure of the laminate.  

Finally, the relationship between compressive and tensile critical stretch values is 

assumed to be equivalent to the ratio of the compressive and tensile strengths of the 

lamina.  The longitudinal and compressive strength ratios are assumed to be equivalent to 

the fiber and matrix critical stretch ratios, respectively.  The first two assumptions allow 

the tensile matrix and compressive fiber critical stretch values, while the third assumption 

allows the compressive matrix and tensile fiber critical stretch values to be obtained.   

 

The laminate with the 6.35 mm central hole is used to calibrate the critical stretch values 

due to the additional experimental observations.  In the first step, the tensile matrix 

critical stretch is calibrated using iterative PD simulations of the tensile loading of the 

notched laminate.  The tensile matrix critical stretch is adjusted until the peak failure load 

for the PD simulation matches the measured value.  For this step, the tensile fiber critical 

stretch is assigned an artificially high value to prevent failure due to fiber damage.  

Following this calibration, the tensile matrix critical stretch value is used to obtain the 

compressive matrix critical stretch value using the ratio of tensile to compressive 

transverse strength of the lamina, 
tY  and 

cY , respectfully.  The compressive matrix 

critical stretch is obtained by multiplying the strength ratio (
c tY Y ) by the matrix tensile 

critical stretch.  Then, the compressive fiber critical stretch value is obtained in a similar 

manner using iterative PD simulations of the notched laminated subjected to compressive 

loading and adjusting the compressive fiber critical stretch to obtain equivalent failure 

loads.  Then, the calibrated compressive fiber critical stretch value can be used to obtain 

the tensile fiber critical stretch value using the ratio of tensile to compressive longitudinal 

strength of the lamina, 
tX  and 

cX , respectfully.  The entire process is repeated to fine-

tune the calibration of the critical stretch values until the failure loads approach the 

measured values. 

 

4.3.2.1 Laminated plate with a center hole 
 

The quasi-isotropic AS4/3501-6 carbon/epoxy composite laminates with a hole were 

previously considered by Wang et al. (2004).  The layup for all of the composite panels is 

2[45 / 0 / 45 / 90] S .  Each laminate specimen is 305 mm x 38.1 mm x 2.08 mm with a 

central through thickness hole.  The specimen dimensions are shown in Fig. 29.  Four 

different diameters ( 2.00,  3.81,  6.35, and 9.55 mm ) of central holes are considered.  The 

material properties of the lamina are 11 142 GPaE , 22 10.3 GPaE , 
12 4.5 GPaG , and 

12 0.27  .  The strength properties of the lamina are 1 2280 MPa t , 1 1440 MPa  c

, 2 57 MPa t , 2 228 MPa  c , and  12 100 MPa.    The laminated specimens were 

tested to failure under both tensile and compressive loading in accordance with ASTM 

3039 and SACMA SRM 3R standards, respectively.   
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Figure 29.  Dimension and loading conditions for notched quasi-isotropic AS4/3501-6 laminates. 

 

The dimensions of each PD model are 118.5 mm x 38.1 mm with a total thickness of 2.08 

mm as shown in Fig. 29.  Each lamina is modeled with a grid of 156 material points in 

the length direction and 50 material points in the thickness direction; the grid spacing in 

the plane of the lamina is 0.76 mm.  The horizon radius is specified as 3.015  x .  A 

central hole is added to each lamina by removing the material points falling within its 

specified diameter.  The spacing in the thickness direction between each lamina is 0.13 

mm.  The loading is applied by specifying an end displacement at both the top and 

bottom edge of the model in incremental steps of 0.5 mm.  Convergence for each step is 

ensured to enforce the quasi-static loading conditions.   

 

The critical stretch parameters are obtained through the inverse approach by calibrating 

the experimentally observed peak failure loads to those obtained from the PD simulation.  

This calibration was completed on the specimen with a 6.35 mm diameter central hole.  

The tensile matrix critical stretch and compressive fiber critical stretch values are 

obtained through calibration with the tensile and compressive failure loads, respectively.  

The ratios of compressive strengths for a lamina are then used to determine the other 

critical stretch values. The critical stretch values obtained using the inverse approach are 

0.0176,cmts 0.0528, cmcs  0.01882,cfts  and 0.01189 cfcs .  A PD simulation of a 

laminate with a 6.35 mm diameter central hole subjected to tensile loading is used to test 

the ability of these values to capture the failure load.  The simulation predicted the 

initiation of failure at the central hole followed closely by an accumulation of damage 

throughout the entire laminate.   
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The peak loads obtained from the PD simulations are within 12% of the experimentally 

observed failure loads.  Figure 30 shows the peak failure loads obtained from the PD 

simulations along with the experimentally results reported by Wang et al. (2004) for the 

four different hole diameters that were considered.  A good agreement is observed 

between the experimental and the PD predicted peak failure loads for both the tensile and 

compressive tests.   

 

  
                                       (a)                                                                (b) 

 

Figure 30.  Experimental (Wang et al., 2004) and PD peak loads for a) tensile and b) compressive 

loading. 

 

 

Tensile Loading - The final damage pattern transitions from one that is aligned with the 

45° angle with respect to the principle coordinate system for the small diameter hole size, 

to the one aligned with the 90° angle for the larger hole sizes.  Figure 31 shows the final 

damage patterns for each ply in the laminate composite subjected to a tensile load for 

four different central hole diameters.  The specimen fracture pattern can be obtained by 

plotting the minimum damage at each material point in the thickness direction.  The 

fracture for each of the specimens is plotted in Fig. 32.  The resulting fracture pattern 

transition from a slant to a flat failure mode as the hole size increases.  A similar 

observation shown in Fig. 33 was captured by Poon (1991) for carbon fiber epoxy 

specimens with the same base layup pattern and three times the thickness. 

 

The initial tensile failure mode in all of the specimens is matrix cracking originating at 

both sides of the central hole in the 90° plies closest to the surface of the laminate.  As 

the loading increases, the damage accumulates in all of the layers and propagates towards 

the edges of the plate.  Delamination due to shear is observed between the layers near the 

surface.  The amount of matrix and delamination that occurs depends on the size of the 

central hole.  In the specimens with a large central hole, the amount of damage that 

accumulates is focused on either side of the hole.  In the specimens with a small central 

hole, the area where damage occurs is extensive.  The fiber failure occurs first in the 0° 

plies, followed quickly by the + 45° layers.  The peak load is observed with the initiation 

of the fiber failure.    
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a)  

b)  

c)  

d)  

 

Figure 31.. Failure patterns in each ply of a 2[45 / 0 / 45 / 90] S  laminate with a central hole of 

diameter a) 2.00 mm, b) 3.81 mm, c) 6.35 mm, and d) 9.55 mm subjected to tensile loading. 

a) b) c) d)  
 

Figure 32.  Failure patterns for a 2[45 / 0 / 45 / 90] S  laminate with a central hole of diameter a) 

2.00 mm, b) 3.81 mm, c) 6.35 mm, and d) 9.55 mm subjected to tensile loading. 
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Figure 33  Effect on failure patterns for a 6[45 / 0 / 45 / 90] S  laminate with a central hole of 

due to increase in hole size (Poon 1991).  

 

 

Compressive Failure - Figure 34 shows the final damage patterns for each ply in the 

laminate composite subjected to a compressive load for the four different diameter central 

hole sizes considered.  Due to quick propagation in the cases with the small diameter 

holes (2.00 mm and 3.81 mm), the final damage pattern is obtained at a time step long 

after the peak failure load.  In all cases, the damage extends horizontally from the central 

hole toward the edge of the specimen.  The final fracture pattern at each material point in 

the thickness direction is plotted in Fig. 35 for each of the different hole diameters.  The 

fracture pattern is consistent for all the different hole diameters.   
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a)  

b)  

c)  

d)  

Figure 34 Failure patterns in each ply of a 2[45 / 0 / 45 / 90] S  laminate with a central hole of 

diameter a) 2.00 mm, b) 3.81 mm, c) 6.35 mm, and d) 9.55 mm subjected to compressive loading. 

 

a) b) c) d)  

Figure 35 Failure patterns for a 2[45 / 0 / 45 / 90] S  laminate with a central hole of diameter a) 

2.00 mm, b) 3.81 mm, c) 6.35 mm, and d) 9.55 mm subjected to compressive loading. 
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The PD simulation for progressive failure can be compared with the experimental 

observations (Fig. 36) obtained by Suemasu et al. (2006).  The initial damage observed in 

the PD simulation is fiber failure due to compression in the 0° layers followed by shear 

failure leading resulting in the loss of stiffness of the structure.  This corresponds with the 

observations by Suemasu et al. (2006) of an the initial failure mode consisting of fiber 

micro-buckling in the 0° layers followed by delamination immediately before the failure 

of the specimen.  The PD simulation also captures the damage extending horizontally 

from the hole that is observed in a C-scan of the experimental specimen immediately 

before the final failure of the specimen.   

 

 

a)        b)  

 

Figure 36  a) C-Scan of the damage immediately before final failure (Suemasu et al., 2006), b) 

Failure pattern predicted using PD simulation. 

 

5. Final remarks 

 

This study demonstrates the ability of the PDLT to accurately capture the material 

response and progressive failure in composite laminates.  PDLT correctly captures the 

structural response of laminates under various loading conditions and laminate layups. 

The capability of the PDLT to accurately model complex laminates is verified against the 

classical laminate theory and FEM.   

 

The PDLT is able to capture matrix cracking, fiber breakage, and delamination due to 

transverse normal and transverse shear deformation.  Also, the PD simulations using the 

critical stretch values obtained using the inverse approach are able to capture the residual 

strength of the notched specimens subjected to both tensile and compressive loading.  

The use of PD in this methodology allows the progressive damage of the composite 

structure to be captured in an extremely accurate manner.   
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